
Narrative highlight text: The effects of strain on intermetallic systems, or the effect of a voltage applied to a 
composite consisting of an intermetallic and an oxide, have received much less attention than the carrier-
doped, strongly correlated complex oxides, typified by the emergence of high-temperature superconductivity 
in doped antiferromagnetic cuprates and colossal magnetoresistance in doped manganites. Reversible 
resistance switching induced by external electric fields on various manganites shows large electroresistance 
(ER) response and provides a great potential as an emerging nonvolatile memory technology. This work 
breaks away from the studies of such effects in purely oxydic materials: An intermetallic FeRh system 
undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows 
two-phase coexistence near the transition. Here we have investigated the effect of an electric field to 
FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ‘giant’ 
electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, 
and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films 
comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of 
the GER effect is the strain-mediated change in their relative proportions. The observed behavior is 
reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase 
coexistence in achieving large changes in physical properties with low-energy external perturbation.
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