Highlight Narrative

We demonstrate the ability of dually-reactive, well-defined diblock copolymers incorporating the chemoselective/functional monomer, 4,4-dimethyl-2-vinylazlactone (VDMA) and the surface-reactive monomer glycidyl methacrylate (GMA) (PGMA-b-PVDMA) to generate thin films of controlled thickness with chemoselectivity for tailoring the surface properties of a wide array of substrates. Neutron reflectivity was used to determine the layer structure and provides strong evidence that the polymer films are PVDMA-rich at the air/film interface and PGMA-rich at the film/silicon interface, but do not completely phase separate even after annealing at temperatures above T_g for both components. These materials represent a platform for a variety of applications including purification membranes, drug delivery, and mimics for biological membranes.

Reference:

“Manipulating Interfaces through Surface Confinement of Poly(glycidyl methacrylate)-block-poly(vinylidimethylazlactone), a Dually Reactive Block Copolymer”,

Acknowledgement of Support:
This research was conducted at the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. The computations were performed using the resources of the CNMS and the National Center for Computational Sciences at Oak Ridge National Laboratory.