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Outlook 

Introduction 
 Why Li-ion batteries? 
 Why scanning probe microscopy? 
 Principles of Electrochemical Strain Microscopy (ESM) 
 

Science 
 New information available through ESM 

• Description of ionic transport 
• Coupling of ionic transport and microstructure 
• Ionic transport through a battery 

 

Early Career Award 
 ESM in the big picture 

 



Secondary (rechargeable) batteries for portable electronic devices 

Li-ion batteries are considered to be the most promising technology 

Why Li-Ion Batteries? 

Nazri, Lithium batteries 2009 

Li-ion intercalation batteries 



Shao-Horn, Nat. Mat. 2008 

 

Li-ion batteries 
Battery functionality is determined by ionic  
transport across several length scales 

Shao-Horn, Solid State Ionics 2001 Courtesy of Edwin Garcia 

Li-Ion Batteries - From Ideal to Real 

Device Interface Grain Atom 

To understand the fundamental processes 
which define a battery, we need to look at 

small length scales < 100nm 
SPM 



Concept of Electrochemical Strain Microscopy 
 

• Utilize the correlation between  
c(Li) and unit cell volume  
 

• Induce local changes in c(Li)  
with biased SPM tip 
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Critical for 
Li-ion transport

ESM signal: 
Surface 

displacement = 
measure for  bias-
induced ∆c(local) 

Amatucci 1996 

Characteristic: volume change 

Strain = 
f(bias)  

The Concept of ESM   

Anna Morozovska 



Ion flow… Length scale Time scale 

Macroscopic through battery 1-10 µm hours 

SPM localized 10-100 nm seconds 

ESM allows for mapping 
without changing charging state of 

the battery (probing ionic transport). 

What is new with ESM (SPM + strain detection + local bias)?  

The Concept of ESM 

Lewis 2007 

Sn-Co-C 
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Time and voltage spectroscopy 

Macro 

Huggins, Advanced Batteries, (2009) 

PITT and GITT  
(potentiostatic and galvanostatic 
intermittent titration technique) 
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Goal: Develop strain analogs to traditional characterization techniques 

Nano 

∆A 

A0 

Operational Regimes of ESM 

“Electrical” environment: Probing ionic transport 
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Time spectroscopy on LiCoO2  

Relaxation after -10V/30ms voltage pulse measured with ESM 
ESM as f(t) can be fitted by simple exponential decay y = A0*exp(-A1/τ)+A2 

Topo Pre-factor A0 τ [ms] 

→ from measurement 50 ms 

Diffusivity of 5·10-14 vs. 10-14 – 10-12m2/s in literature. 

τ
LD

2

=

Ionic transport of Li described by diffusivity D [m2/s] with D ≈ exp(-Ea/RT)  
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→ tip radius 50 nm 



ESM as function of T on LiCoO2 
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Ea = 0.28 +/- 0.02eV

Activation energy for ionic transport 0.28 eV vs. 0.3 eV in literature. 

For single grains 
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Compare to ferroelectrics 



Electrochemical activity of step edges on LiCoO2 

1x1um 

0.4x0.4um 

High resolution images 
allow to investigate 

processes at single step 
edges! 

Deflection Li-ion activity 

Deflection Li-ion activity Coupling of ionic 
transport and grain 

morphology 



Ionic transport through a-Si/LiPON/LiCoO2 

Current  
collector 

Electrolyte 
Current  
collector 

Cathode 

Radio frequency sputtered thin film battery 

Anode 

• a-Si/LiPON/LiCoO2 
• LiPON: glassy lithium  
  phosphorus oxynitride 
• Thin film layers 500nm - 1µm 

H
eight [nm

] 

Dudney, J. Mater. Sci. Eng. B 116, 245 (2005) 

a-Si 

LiPON 

LiCoO2 

Al2O3 
2µm 

V 

a-Si shows a substrate induced 
surface struture. 

330  

0  
Balke et al., Nano Lett. 10, 3420 (2010) 



Tracking the charge transport through a-Si/LiPON/LiCoO2 

• Increased ionic transport along the 
  boundary like features  
• Good/bad for battery performance? 

Evolution of Li activity with increasing state of charge: 
Spatially resolved maps of Li activity: 

Increasing charging state 

High 

Low 

Li-ion activity 

Balke et al., Nano Lett. 10, 3420 (2010) 

Si 

LiPON 

LiCoO2 



The Big Picture: ESM and ECA 

Summary 
 

• ESM can be used to 
describe the ionic 
transport in time, 
voltage, and 
temperature domain 
 

• The ionic transport 
can be correlated with 
the electrode 
microstructure 
 

• The ionic flow 
through a battery can 
be observed   
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General 
description 

Variables: t, V, T 

Correlation with 
microstructure 
Variables: x,y 

Development with 
cycling 

Variables: xLi, N 

Decoupling of bulk and 
interface processes 
Variables: air, liquid 

Ionic transport in batteries 

Understanding the battery on 
the nanoscale 

ECA work flow 



Understand and improve 
battery functionality

Power density
Capacity

Charging rate

Electrode 
microstructure

Role of: 
Texture, doping, 

grain size, 
crystallinity

Interface properties
Role of: 

Roughness, 
nanostructuring, SEI 

layer formation, 
interaction with 

electrolyte

Electrode properties
Nanoscale coupling of 

electronic and ionic 
conductivity

Battery degradation
• lower D(Li)

• less ec-active material

Nanoscale characterization can provide critically needed answers:

The Big Picture: Experimental Milestones 

Material/battery engineering through knowledge: 
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Thank you for your attention! 
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